Backtesting Stochastic Mortality Models: An Ex-Post Evaluation of Multi-Period-Ahead Density Forecasts

نویسندگان

  • Kevin Dowd
  • Andrew J.G. Cairns
  • David Blake
  • Guy D. Coughlan
  • David Epstein
  • Marwa Khalaf
  • Andrew J. G. Cairns
  • Marwa Khalaf-Allah
چکیده

This study sets out a backtesting framework applicable to the multiperiod-ahead forecasts from stochastic mortality models and uses it to evaluate the forecasting performance of six different stochastic mortality models applied to English & Welsh male mortality data. The models considered are the following: Lee-Carter’s 1992 one-factor model; a version of Renshaw-Haberman’s 2006 extension of the Lee-Carter model to allow for a cohort effect; the age-period-cohort model, which is a simplified version of Renshaw-Haberman; Cairns, Blake, and Dowd’s 2006 two-factor model; and two generalized versions of the last named with an added cohort effect. For the data set used herein, the results from applying this methodology suggest that the models perform adequately by most backtests and that prediction intervals that incorporate parameter uncertainty are wider than those that do not. We also find little difference between the performances of five of the models, but the remaining model shows considerable forecast instability.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Implied Biases in Forecasts of Earnings for Different Horizons

Security analysts generally provide forecasts of earnings for the current period as well as oneyear ahead earnings at fiscal year end. In this study, we derive an estimation procedure, which infers forecast bias from equivalent price expressions that utilize different horizon earnings forecasts. It is well documented that analyst long-horizon earnings forecasts tend to be more optimistic (ex po...

متن کامل

Forecasting Conditional Correlation for Exchange Rates using Multivariate GARCH models with Historical Value-at-Risk application

The generalization from the univariate volatility model into a multivariate approach opens up a variety of modeling possibilities. This study aims to examine the performance of the two multivariate GARCH models BEKK and DCC, applied on ten years exchange rates data. Estimations and forecasts of the covariance matrix are made for the EUR/SEK and USD/SEK, whereby the forecasts are used in a pract...

متن کامل

Stochastic population forecasts using functional data models for mortality, fertility and migration

Age-sex-specific population forecasts are derived through stochastic population renewal using forecasts of mortality, fertility and net migration. Functional data models with time series coefficients are used to model age-specific mortality and fertility rates. As detailed migration data are lacking, net migration by age and sex is estimated as the difference between historic annual population ...

متن کامل

Mortality Density Forecasts: An Analysis of Six Stochastic Mortality Models

This paper develops a framework for developing forecasts of future mortality rates. We discuss the suitability of six stochastic mortality models for forecasting future mortality and estimating the density of mortality rates at different ages. In particular, the models are assessed individually with reference to the following qualitative criteria that focus on the plausibility of their forecast...

متن کامل

The Stock Returns Volatility based on the GARCH (1,1) Model: The Superiority of the Truncated Standard Normal Distribution in Forecasting Volatility

I n this paper, we specify that the GARCH(1,1) model has strong forecasting volatility and its usage under the truncated standard normal distribution (TSND) is more suitable than when it is under the normal and student-t distributions. On the contrary, no comparison was tried between the forecasting performance of volatility of the daily return series using the multi-step ahead forec...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010